Small Zeros of Quadratic Forms Outside a Union of Varieties

نویسندگان

  • Wai Kiu Chan
  • Lenny Fukshansky
  • Glenn R. Henshaw
چکیده

Let F be a quadratic form in N ≥ 2 variables defined on a vector space V ⊆ KN over a global field K, and Z ⊆ KN be a finite union of varieties defined by families of homogeneous polynomials over K. We show that if V \ Z contains a nontrivial zero of F , then there exists a linearly independent collection of small-height zeros of F in V \ Z, where the height bound does not depend on the height of Z, only on the degrees of its defining polynomials. As a corollary of this result, we show that there exists a small-height maximal totally isotropic subspace W of the quadratic space (V, F ) such that W is not contained in Z. Our investigation extends previous results on small zeros of quadratic forms, including Cassels’ theorem and its various generalizations. The paper also contains an appendix with two variations of Siegel’s lemma. All bounds on height are explicit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Height Bounds on Zeros of Quadratic Forms Over Q-bar

In this paper we establish three results on small-height zeros of quadratic polynomials over Q. For a single quadratic form in N ≥ 2 variables on a subspace of Q , we prove an upper bound on the height of a smallest nontrivial zero outside of an algebraic set under the assumption that such a zero exists. For a system of k quadratic forms on an L-dimensional subspace of Q , N ≥ L ≥ k(k+1) 2 + 1,...

متن کامل

Heights and quadratic forms: Cassels’ theorem and its generalizations

In this survey paper, we discuss the classical Cassels’ theorem on existence of small-height zeros of quadratic forms over Q and its many extensions, to different fields and rings, as well as to more general situations, such as existence of totally isotropic small-height subspaces. We also discuss related recent results on effective structural theorems for quadratic spaces, as well as Cassels’-...

متن کامل

Small Zeros of Quadratic Forms with Linear Conditions

where H here stands for height of x and F , respectively. This generalizes a well known result of Cassels [2] about the existence of small zeros of quadratic forms with rational coefficients to the existence of small zeros of quadratic polynomials with rational coefficients. We generalize Masser’s result in the following way. Let K be a number field of degree d over Q. Let the coefficients fij ...

متن کامل

A Hasse Principle for Quadratic Forms over Function Fields

We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with referen...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016